Covalent Modification of Glassy Carbon Electrode with an Imidazolium based Methoxysilyl Ionic Liquid Nanoparticles: Application in Determination of Redox System
Authors
Abstract:
Glassy carbon (GC) is the most commonly used carbon-based electrode in the analytical laboratory. Because of the high background current and low electrode response, modification of this electrode can be done by various materials and techniques. An ionic liquid (IL), 1-methyl-3-(3-trimethoxysilyl propyl) imidazoliumbis (trifluoromethylsulfonyl) imide, was covalently cross linked onto the GC surface. GC was activated in sulfuric acid solution by cyclic voltammetry, which generate surface oxygen containing functional groups such as OH group, through which the IL was covalently bonded the surface of GC. The resulting surface was characterized by using cyclic voltammetry, differential pulse voltammetry and atomic force microscopy. Hydroquinone and ascorbic acid were the redox systems used to study the effect of ILcovalent bonding on the electron transfer rate and response decay of the GC. Compared to GC modified with a physically adsorbed layer of IL with an unstable response and decrease in peak current, the chemically IL-modified electrode showed stable and favorable response characteristics.
similar resources
covalent modification of glassy carbon electrode with an imidazolium based methoxysilyl ionic liquid nanoparticles: application in determination of redox system
glassy carbon (gc) is the most commonly used carbon-based electrode in the analytical laboratory. because of the high background current and low electrode response, modification of this electrode can be done by various materials and techniques. an ionic liquid (il), 1-methyl-3-(3-trimethoxysilyl propyl) imidazoliumbis (trifluoromethylsulfonyl) imide, was covalently cross linked onto the gc surf...
full textSimultaneous Determination of Thiocyanate and Oxalate in Urine using a Carbon Ionic Liquid Electrode Modified with TiO2-Fe Nanoparticles
A carbon ionic liquid electrode (CILE) modified with TiO2-Fe nanoparticles was constructed by incorporating TiO2-Fe nanoparticles into the paste matrix. Under the optimized experimental conditions, using differential pulse voltammetry (DPV), the oxidation of thiocyanate and oxalate were occurred at potentials of 0.740 V and 1.010 V, respectively, at the surface of the modi...
full textapplication and construction of carbon paste modified electrodes developed for determination of metal ions in some real samples
ساخت الکترودهاِی اصلاح شده ِیکِی از چالشهاِی همِیشگِی در دانش شیمِی بوِیژه شیمِی تجزیه مِی باشد ،که با در نظر گرفتن سادگِی ساخت، کاربردی بودن و ارزان بودن روش مِی توان به باارزش بودن چنِین سنسورهاِی پِی برد.آنچه که در ادامه آورده شده به ساخت و کاربرد الکترودهاِی اصلاح شده با استفاده از نانو ذرات در اندازه گِیرِی ولتامترِی آهن وکادمِیم اشاره دارد. کار اول اختصاص دارد به ساخت الکترود خمِیر کربن اصلاح شده با لِیگاند داِ...
15 صفحه اولSurface Modification of Glassy Carbon Electrode by Ni-Cu Nanoparticles as a Competitive Electrode for Ethanol Electro-Oxidation
In the present study, Nickel-Copper nanoparticles were electrodeposited on glassy carbon electrode (GCE) by using electroplating deposition method. The prepared electrode was characterized by scanning electron microscopy (SEM) and elemental mapping analysis. Results showed that Ni-Cu nanoparticles with a high density are distributed at the surface of the glassy carbon electrode. Subsequentl...
full textCovalent modification of glassy carbon electrode with glutamic acid for simultaneous determination of uric acid and ascorbic acid.
A novel covalently modified glassy carbon electrode with glutamic acid has been fabricated via an electrochemical oxidation procedure and was applied to the catalytic oxidation of uric acid (UA) and ascorbic acid (AA), reducing the overpotentials by about 0.2 V and 0.3 V, respectively. Based on its strong catalytic function toward the oxidation of UA and AA, the modified electrode resolved the ...
full textDirect proteins electrochemistry based on ionic liquid mediated carbon nanotube modified glassy carbon electrode.
A novel glassy carbon electrode modified by a gel containing multi-walled carbon nanotubes (MWNTs) and ionic liquid of 1-butyl-3-methylimidazolium hexafluorophosphate (BMIPF6) is reported. The gel is formed by grinding of MWNTs and BMIPF6. Such gel is then coated on the surface of a glassy carbon electrode. We have employed scanning electron microscopy, Fourier transform infrared spectrometry (...
full textMy Resources
Journal title
volume 11 issue 1
pages 53- 57
publication date 2015-03-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023